Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Immunol ; 14: 1272639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090573

RESUMO

Background: Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods: Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results: NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion: As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.


Assuntos
Enterocolite , Síndrome de Ativação Macrofágica , Humanos , Camundongos , Recém-Nascido , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Mutação , Síndrome de Ativação Macrofágica/genética , Enterocolite/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
2.
J Allergy Clin Immunol ; 152(1): 230-243, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36822481

RESUMO

BACKGROUND: Familial Mediterranean fever (FMF), caused by mutations in the pyrin-encoding MEFV gene, is characterized by uncontrolled caspase-1 activation and IL-1ß secretion. A similar mechanism drives inflammation in cryopyrin-associated periodic fever syndrome (CAPS) caused by mutations in NLRP3. CAPS and FMF, however, result in largely different clinical manifestations, pointing to additional, autoinflammatory pathways involved in FMF. Another hallmark of FMF is extraordinarily high expression of S100A8 and S100A9. These alarmins are ligands of Toll-like receptor 4 and amplifiers of inflammation. However, the relevance of this inflammatory pathway for the pathogenesis of FMF is unknown. OBJECTIVE: This study investigated whether mutations in pyrin result in specific secretion of S100A8/A9 alarmins through gasdermin D pores' amplifying FMF pathology. METHODS: S100A8/A9 levels in FMF patients were quantified by enzyme-linked immunosorbent assay. In vitro models with knockout cell lines and specific protein inhibitors were used to unravel the S100A8/A9 secretion mechanism. The impact of S100A8/A9 to the pathophysiology of FMF was analyzed with FMF (MEFVV726A/V726A) and S100A9-/- mouse models. Pyrin-S100A8/A9 interaction was investigated by coimmunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay studies. RESULTS: The S100A8/A9 complexes directly interacted with pyrin. Knocking out pyrin, caspase-1, or gasdermin D inhibited the secretion of these S100 alarmins. Inflammatory S100A8/A9 dimers were inactivated by tetramer formation. Blocking this inactivation by targeted S100A9 deletion in a murine FMF model demonstrated the relevance of this novel autoinflammatory pathway in FMF. CONCLUSION: This is the first proof that members of the S100 alarmin family are released in a pyrin/caspase-1/gasdermin D-dependent pathway and directly drive autoinflammation in vivo.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Febre Familiar do Mediterrâneo , Animais , Camundongos , Alarminas , Calgranulina A/genética , Caspases/metabolismo , Síndromes Periódicas Associadas à Criopirina/genética , Febre Familiar do Mediterrâneo/genética , Gasderminas , Inflamação , Pirina/genética
3.
EMBO Rep ; 23(10): e54277, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35899491

RESUMO

Neutrophils are the most prevalent immune cells in circulation, but the repertoire of canonical inflammasomes in neutrophils and their respective involvement in neutrophil IL-1ß secretion and neutrophil cell death remain unclear. Here, we show that neutrophil-targeted expression of the disease-associated gain-of-function Nlrp3A350V mutant suffices for systemic autoinflammatory disease and tissue pathology in vivo. We confirm the activity of the canonical NLRP3 and NLRC4 inflammasomes in neutrophils, and further show that the NLRP1b, Pyrin and AIM2 inflammasomes also promote maturation and secretion of interleukin (IL)-1ß in cultured bone marrow neutrophils. Notably, all tested canonical inflammasomes promote GSDMD cleavage in neutrophils, and canonical inflammasome-induced pyroptosis and secretion of mature IL-1ß are blunted in GSDMD-knockout neutrophils. In contrast, GSDMD is dispensable for PMA-induced NETosis. We also show that Salmonella Typhimurium-induced pyroptosis is markedly increased in Nox2/Gp91Phox -deficient neutrophils that lack NADPH oxidase activity and are defective in PMA-induced NETosis. In conclusion, we establish the canonical inflammasome repertoire in neutrophils and identify differential roles for GSDMD and the NADPH complex in canonical inflammasome-induced neutrophil pyroptosis and mitogen-induced NETosis, respectively.


Assuntos
Armadilhas Extracelulares , Inflamassomos , Neutrófilos , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Piroptose , Animais , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos/metabolismo , NADP/metabolismo , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pirina/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996874

RESUMO

Lethal toxin (LeTx)-mediated killing of myeloid cells is essential for Bacillus anthracis, the causative agent of anthrax, to establish systemic infection and induce lethal anthrax. The "LeTx-sensitive" NLRP1b inflammasome of BALB/c and 129S macrophages swiftly responds to LeTx intoxication with pyroptosis and secretion of interleukin (IL)-1ß. However, human NLRP1 is nonresponsive to LeTx, prompting us to investigate B. anthracis host-pathogen interactions in C57BL/6J (B6) macrophages and mice that also lack a LeTx-sensitive Nlrp1b allele. Unexpectedly, we found that LeTx intoxication and live B. anthracis infection of B6 macrophages elicited robust secretion of IL-1ß, which critically relied on the NLRP3 inflammasome. TNF signaling through both TNF receptor 1 (TNF-R1) and TNF-R2 were required for B. anthracis-induced NLRP3 inflammasome activation, which was further controlled by RIPK1 kinase activity and LeTx-mediated proteolytic inactivation of MAP kinase signaling. In addition to activating the NLRP3 inflammasome, LeTx-induced MAPKK inactivation and TNF production sensitized B. anthracis-infected macrophages to robust RIPK1- and caspase-8-dependent apoptosis. In agreement, purified LeTx triggered RIPK1 kinase activity- and caspase-8-dependent apoptosis only in macrophages primed with TNF or following engagement of TRIF-dependent Toll-like receptors. Consistently, genetic and pharmacological inhibition of RIPK1 inhibited NLRP3 inflammasome activation and apoptosis of LeTx-intoxicated and B. anthracis-infected macrophages. Caspase-8/RIPK3-deficient mice were significantly protected from B. anthracis-induced lethality, demonstrating the in vivo pathophysiological relevance of this cytotoxic mechanism. Collectively, these results establish TNF- and RIPK1 kinase activity-dependent NLRP3 inflammasome activation and macrophage apoptosis as key host-pathogen mechanisms in lethal anthrax.


Assuntos
Apoptose , Bacillus anthracis/metabolismo , Caspase 8/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Antraz , Caspase 8/genética , Interações Hospedeiro-Patógeno/fisiologia , Inflamassomos/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais
5.
Cell Rep ; 32(4): 107959, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726624

RESUMO

Pyroptosis has emerged as a key mechanism by which inflammasomes promote host defense against microbial pathogens and sterile inflammation. Gasdermin D (GSDMD)-mediated cell lysis is a hallmark of pyroptosis, but our understanding of cell death signaling during pyroptosis is fragmented. Here, we show that independently of GSDMD-mediated plasma membrane permeabilization, inflammasome receptors engage caspase-1 and caspase-8, both of which redundantly promote activation of apoptotic executioner caspase-3 and caspase-7 in pyroptotic macrophages. Impaired GSDMD pore formation downstream of caspase-1 and caspase-8 activation suffices to unmask the apoptotic phenotype of pyroptotic macrophages. Combined inactivation of initiator caspase-1 and caspase-8, or executioner caspase-3 and caspase-7, is required to abolish inflammasome-induced DEVDase activity during pyroptosis and in apoptotic Gsdmd-/- cells. Collectively, these results unveil a robust apoptotic caspase network that is activated in parallel to GSDMD-mediated plasma membrane permeabilization and safeguards cell death induction in pyroptotic macrophages.


Assuntos
Caspases/metabolismo , Macrófagos/metabolismo , Piroptose/fisiologia , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 1/metabolismo , Caspase 1/fisiologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 8/metabolismo , Caspase 8/fisiologia , Morte Celular , Membrana Celular/metabolismo , Feminino , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato/metabolismo
6.
Ann Rheum Dis ; 79(7): 960-968, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32312770

RESUMO

BACKGROUND AND OBJECTIVE: Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease (AID) worldwide. The disease is caused by mutations in the MEFV gene encoding the inflammasome sensor Pyrin. Clinical diagnosis of FMF is complicated by overlap in symptoms with other diseases, and interpretation of genetic testing is confounded by the lack of a clear genotype-phenotype association for most of the 340 reported MEFV variants. In this study, the authors designed a functional assay and evaluated its potential in supporting FMF diagnosis. METHODS: Peripheral blood mononuclear cells (PBMCs) were obtained from patients with Pyrin-associated autoinflammation with an FMF phenotype (n=43) or with autoinflammatory features not compatible with FMF (n=8), 10 asymptomatic carriers and 48 healthy donors. Sera were obtained from patients with distinct AIDs (n=10), and whole blood from a subset of patients and controls. The clinical, demographic, molecular genetic factors and other characteristics of the patient population were assessed for their impact on the diagnostic test read-out. Interleukin (IL)-1ß and IL-18 levels were measured by Luminex assay. RESULTS: The ex vivo colchicine assay may be performed on whole blood or PBMC. The functional assay robustly segregated patients with FMF from healthy controls and patients with related clinical disorders. The diagnostic test distinguished patients with classical FMF mutations (M694V, M694I, M680I, R761H) from patients with other MEFV mutations and variants (K695R, P369S, R202Q, E148Q) that are considered benign or of uncertain clinical significance. CONCLUSION: The ex vivo colchicine assay may support diagnosis of FMF and functional subtyping of Pyrin-associated autoinflammation.


Assuntos
Febre Familiar do Mediterrâneo/diagnóstico , Imunofenotipagem/métodos , Pirina/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Colchicina/análise , Febre Familiar do Mediterrâneo/genética , Feminino , Estudos de Associação Genética , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Pirina/genética , Adulto Jovem
7.
Science ; 364(6442)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123109

RESUMO

Although spontaneous protein crystallization is a rare event in vivo, Charcot-Leyden crystals (CLCs) consisting of galectin-10 (Gal10) protein are frequently observed in eosinophilic diseases, such as asthma. We found that CLCs derived from patients showed crystal packing and Gal10 structure identical to those of Gal10 crystals grown in vitro. When administered to the airways, crystalline Gal10 stimulated innate and adaptive immunity and acted as a type 2 adjuvant. By contrast, a soluble Gal10 mutein was inert. Antibodies directed against key epitopes of the CLC crystallization interface dissolved preexisting CLCs in patient-derived mucus within hours and reversed crystal-driven inflammation, goblet-cell metaplasia, immunoglobulin E (IgE) synthesis, and bronchial hyperreactivity (BHR) in a humanized mouse model of asthma. Thus, protein crystals may promote hallmark features of asthma and are targetable by crystal-dissolving antibodies.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Asma/terapia , Glicoproteínas/química , Glicoproteínas/farmacologia , Imunidade Inata/efeitos dos fármacos , Lisofosfolipase/química , Lisofosfolipase/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Asma/imunologia , Asma/patologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/terapia , Cristalização , Modelos Animais de Doenças , Glicoproteínas/administração & dosagem , Glicoproteínas/imunologia , Células Caliciformes/imunologia , Células Caliciformes/patologia , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina E/imunologia , Lisofosfolipase/administração & dosagem , Lisofosfolipase/imunologia , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Muco/imunologia
8.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31101676

RESUMO

In addition to the genomic alterations that occur in malignant cells, the immune system is increasingly appreciated as a critical axis that regulates the rise of neoplasms and the development of primary tumours and metastases. The interaction between inflammatory cell infiltrates and stromal cells in the tumour microenvironment is complex, with inflammation playing both pro- and anti-tumorigenic roles. Inflammasomes are intracellular multi-protein complexes that act as key signalling hubs of the innate immune system. They respond to cellular stress and trauma by promoting activation of caspase-1, a protease that induces a pro-inflammatory cell death mode termed pyroptosis along with the maturation and secretion of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18. Here, we will briefly introduce inflammasome biology with a focus on the dual roles of inflammasome-produced cytokines in cancer development. Despite emerging insight that inflammasomes may promote and suppress cancer development according to the tumour stage and the tumour microenvironment, much remains to be uncovered. Further exploration of inflammasome biology in tumorigenesis should enable the development of novel immunotherapies for cancer patients.


Assuntos
Citocinas/metabolismo , Suscetibilidade a Doenças , Inflamassomos/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Transdução de Sinais , Microambiente Tumoral
9.
Artigo em Inglês | MEDLINE | ID: mdl-29038114

RESUMO

As key regulators of both innate and adaptive immunity, it is unsurprising that the activity of interleukin (IL)-1 cytokine family members is tightly controlled by decoy receptors, antagonists, and a variety of other mechanisms. Additionally, inflammasome-mediated proteolytic maturation is a prominent and distinguishing feature of two important members of this cytokine family, IL-1ß and IL-18, because their full-length gene products are biologically inert. Although vital in antimicrobial host defense, deregulated inflammasome signaling is linked with a growing number of autoimmune and autoinflammatory diseases. Here, we focus on introducing the diverse inflammasome types and discussing their causal roles in periodic fever syndromes. Therapies targeting IL-1 or IL-18 show great efficacy in some of these autoinflammatory diseases, although further understanding of the molecular mechanisms leading to unregulated production of these key cytokines is required to benefit more patients.


Assuntos
Inflamassomos/imunologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Imunidade Adaptativa , Anemia Diseritropoética Congênita/imunologia , Animais , Doenças Autoimunes , Autoimunidade , Proteínas de Transporte/imunologia , Síndromes Periódicas Associadas à Criopirina/imunologia , Febre Familiar do Mediterrâneo/imunologia , Febre/imunologia , Proteína HMGB1/metabolismo , Humanos , Sistema Imunitário , Imunidade Inata , Síndromes de Imunodeficiência/imunologia , Inflamação , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Camundongos , Modelos Biológicos , Osteomielite/imunologia , Piroptose , Proteínas S100/metabolismo , Transdução de Sinais
10.
Cell Death Differ ; 26(1): 146-161, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666477

RESUMO

Pyroptosis is rapidly emerging as a mechanism of anti-microbial host defense, and of extracellular release of the inflammasome-dependent cytokines interleukin (IL)-1ß and IL-18, which contributes to autoinflammatory pathology. Caspases 1, 4, 5 and 11 trigger this regulated form of necrosis by cleaving the pyroptosis effector gasdermin D (GSDMD), causing its pore-forming amino-terminal domain to oligomerize and perforate the plasma membrane. However, the subcellular events that precede pyroptotic cell lysis are ill defined. In this study, we triggered primary macrophages to undergo pyroptosis from three inflammasome types and recorded their dynamics and morphology using high-resolution live-cell spinning disk confocal laser microscopy. Based on quantitative analysis of single-cell subcellular events, we propose a model of pyroptotic cell disintegration that is initiated by opening of GSDMD-dependent ion channels or pores that are more restrictive than recently proposed GSDMD pores, followed by osmotic cell swelling, commitment of mitochondria and other membrane-bound organelles prior to sudden rupture of the plasma membrane and full permeability to intracellular proteins. This study provides a dynamic framework for understanding cellular changes that occur during pyroptosis, and charts a chronological sequence of GSDMD-mediated subcellular events that define pyroptotic cell death at the single-cell level.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/citologia , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/imunologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Membrana Celular/metabolismo , Inflamassomos/metabolismo , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necroptose , Necrose/metabolismo , Fosfatidilserinas/metabolismo , Piroptose/genética , Análise de Célula Única
11.
J Exp Med ; 215(6): 1519-1529, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29793924

RESUMO

Pyroptosis is an inflammasome-induced lytic cell death mode, the physiological role of which in chronic inflammatory diseases is unknown. Familial Mediterranean Fever (FMF) is the most common monogenic autoinflammatory disease worldwide, affecting an estimated 150,000 patients. The disease is caused by missense mutations in Mefv that activate the Pyrin inflammasome, but the pathophysiologic mechanisms driving autoinflammation in FMF are incompletely understood. Here, we show that Clostridium difficile infection of FMF knock-in macrophages that express a chimeric FMF-associated MefvV726A Pyrin elicited pyroptosis and gasdermin D (GSDMD)-mediated interleukin (IL)-1ß secretion. Importantly, in vivo GSDMD deletion abolished spontaneous autoinflammatory disease. GSDMD-deficient FMF knock-in mice were fully protected from the runted growth, anemia, systemic inflammatory cytokine production, neutrophilia, and tissue damage that characterize this autoinflammatory disease model. Overall, this work identifies pyroptosis as a critical mechanism of IL-1ß-dependent autoinflammation in FMF and highlights GSDMD inhibition as a potential antiinflammatory strategy in inflammasome-driven diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Febre Familiar do Mediterrâneo/metabolismo , Febre Familiar do Mediterrâneo/patologia , Inflamação/metabolismo , Inflamação/patologia , Animais , Clostridioides difficile/fisiologia , Citocinas/biossíntese , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Neutrófilos/patologia , Proteínas de Ligação a Fosfato , Pirina/metabolismo , Pirina/farmacologia , Piroptose , Baço/patologia , Síndrome de Emaciação/patologia
12.
Cell Rep ; 21(12): 3427-3444, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262324

RESUMO

The caspase activation and recruitment domain (CARD)-based inflammasome sensors NLRP1b and NLRC4 induce caspase-1-dependent pyroptosis independent of the inflammasome adaptor ASC. Here, we show that NLRP1b and NLRC4 trigger caspase-8-mediated apoptosis as an alternative cell death program in caspase-1-/- macrophages and intestinal epithelial organoids (IECs). The caspase-8 adaptor FADD was recruited to ASC specks, which served as cytosolic platforms for caspase-8 activation and NLRP1b/NLRC4-induced apoptosis. We further found that caspase-1 protease activity dominated over scaffolding functions in suppressing caspase-8 activation and induction of apoptosis of macrophages and IECs. Moreover, TLR-induced c-FLIP expression inhibited caspase-8-mediated apoptosis downstream of ASC speck assembly, but did not affect pyroptosis induction by NLRP1b and NLRC4. Moreover, unlike during pyroptosis, NLRP1b- and NLRC4-elicited apoptosis retained alarmins and the inflammasome-matured cytokines interleukin 1ß (IL-1ß) and IL-18 intracellularly. This work identifies critical mechanisms regulating apoptosis induction by the inflammasome sensors NLRP1b and NLRC4 and suggests converting pyroptosis into apoptosis as a paradigm for suppressing inflammation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Piroptose , Animais , Caspase 8/metabolismo , Enterócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores Toll-Like/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(50): 14384-14389, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911804

RESUMO

Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease worldwide. It is caused by mutations in the inflammasome adaptor Pyrin, but how FMF mutations alter signaling in FMF patients is unknown. Herein, we establish Clostridium difficile and its enterotoxin A (TcdA) as Pyrin-activating agents and show that wild-type and FMF Pyrin are differentially controlled by microtubules. Diverse microtubule assembly inhibitors prevented Pyrin-mediated caspase-1 activation and secretion of IL-1ß and IL-18 from mouse macrophages and human peripheral blood mononuclear cells (PBMCs). Remarkably, Pyrin inflammasome activation persisted upon microtubule disassembly in PBMCs of FMF patients but not in cells of patients afflicted with other autoinflammatory diseases. We further demonstrate that microtubules control Pyrin activation downstream of Pyrin dephosphorylation and that FMF mutations enable microtubule-independent assembly of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) micrometer-sized perinuclear structures (specks). The discovery that Pyrin mutations remove the obligatory requirement for microtubules in inflammasome activation provides a conceptual framework for understanding FMF and enables immunological screening of FMF mutations.


Assuntos
Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/metabolismo , Inflamassomos/metabolismo , Mutação , Pirina/genética , Pirina/metabolismo , Animais , Toxinas Bacterianas/toxicidade , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Infecções por Clostridium/imunologia , Infecções por Clostridium/metabolismo , Enterotoxinas/toxicidade , Febre Familiar do Mediterrâneo/imunologia , Células HEK293 , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/efeitos dos fármacos , Microtúbulos/imunologia , Microtúbulos/metabolismo , Pirina/imunologia , Tubulina (Proteína)/metabolismo
15.
Antibodies (Basel) ; 5(2)2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31557988

RESUMO

Sialoadhesin (Sn) is a surface receptor expressed on a subset of macrophages in steady state conditions. During inflammation and diseases, Sn is highly upregulated on macrophages and blood monocytes. Therefore, therapies using monoclonal antibodies (mAbs) to target Sn-positive (Sn+) cells are a potential strategy for targeted treatment. It has been shown that Sn internalizes after binding with a mAb, though it is not clear whether this is species-specific. In this study, new Sn-specific mAbs were developed and analyzed for cross-reactivity between species. In addition, the newly developed mAbs were compared to mAbs used in previous research for their epitope recognition and other Sn-specific characteristics. Both species-specific and cross-reactive antibodies could be identified. Furthermore, sialic acid-binding of red blood cells (RBC) could be inhibited with mAbs recognizing different epitopes and all mAb showed internalization of Sn. The newly developed mAbs can be used as novel tools for Sn research and further analysis of Sn internalization in different species.

16.
Semin Immunopathol ; 37(4): 313-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895577

RESUMO

Over recent years, inflammasomes have emerged as key regulators of immune and inflammatory responses. They induce programmed cell death and direct the release of danger signals and the inflammatory cytokines interleukin (IL)-1ß and IL-18. The concerted actions of inflammasomes are of utmost importance for responding adequately to harmful environmental agents and infections. However, deregulated inflammasome signaling is increasingly linked to a diversity of human pathologies, including rheumatoid arthritis, inflammatory bowel disease, and rare, hereditary periodic fever syndromes. In this review, we discuss recent insight in the protective and detrimental roles of inflammasomes in selected infectious, autoinflammatory and autoimmune diseases, and cover clinically approved therapies that interfere with inflammasome signaling. These findings highlight the importance of fine-balancing the Ying and Yang activities of inflammasomes for sustained homeostasis and suggest that further understanding of inflammasome mechanisms may offer new cures for human diseases.


Assuntos
Doenças Autoimunes/metabolismo , Doenças Hereditárias Autoinflamatórias/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Animais , Doenças Autoimunes/etiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/etiologia
17.
FEBS J ; 281(20): 4568-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25154302

RESUMO

Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) are intracellular proteins that are chiefly known for their critical functions in inflammatory responses and host defense against microbial pathogens. Several NLRs have been demonstrated to assemble inflammasomes or to engage transcriptional signaling cascades that result in the production of pro-inflammatory cytokines and bactericidal factors. In recent years, NLRs have also emerged as key regulators of early mammalian embryogenesis and reproduction. A subset of phylogenetically related NLRs represents a new class of maternal effect genes that are highly expressed in maturing oocytes and pre-implantation embryos. Mutations in several of these NLRs have been linked to hereditary reproductive defects and imprinting diseases. In this review, we discuss the expression profiles, the emerging functions and molecular mode of action of these NLRs with newly recognized roles at the interfaces of the immune and reproductive systems. In addition, we provide an overview of coding mutations in NLRs that have been associated with human reproductive diseases, and outline crucial outstanding questions in this emerging research field.


Assuntos
Imunidade Inata/imunologia , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Reprodução/fisiologia , Animais , Humanos , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Transdução de Sinais
18.
Virus Res ; 177(2): 147-55, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23932898

RESUMO

Targeting antigens to professional antigen presenting cells resident at the sites where effective immune responses are generated is a promising vaccination strategy. As such, targeting sialoadhesin (Sn)-expressing macrophages, abundantly present in spleen and lymph nodes where they appear to be strategically placed for antigen capture and processing, is recently gaining increased attention. Previously, we have shown that humoral immune responses to the model antigen human serum albumin can be enhanced by using a porcine Sn-specific monoclonal antibody to target the model antigen to Sn-expressing macrophages. To date however, no studies have been performed to evaluate whether targeted delivery of a pathogen-derived antigen can enhance the pathogen-specific immune response. Therefore, we selected a linear epitope on glycoprotein 4 of porcine reproductive and respiratory syndrome virus (PRRSV), which is known to be a target of virus-neutralizing antibodies. This paper reports on the targeted delivery of this viral peptide to porcine Sn-expressing macrophages and the evaluation of the subsequent immune response in a vaccination-challenge set-up. Four copies of the selected PRRSV epitope were genetically fused to a previously developed porcine Sn-targeting recombinant antibody or an irrelevant isotype control. Fusion proteins were shown to be efficiently purified from HEK293T cell supernatants and subsequently, only Sn-specific fusion proteins were shown to bind to and to be internalized into Sn-expressing cells. Subsequent immunizations with a single dose of the fusion proteins showed that peptide-specific immune responses and neutralizing antibody responses after PRRSV challenge were enhanced in animals receiving a single 500 µg intramuscular dose of the Sn-targeting fusion protein, although correlations between the two read-outs were hard to effectuate. Furthermore, a minor beneficial effect on viral clearance was observed. Together, these data show that viral peptide targeting to porcine Sn-expressing macrophages can improve the anti-viral immune response, although more research will be needed to further explore vaccination potential.


Assuntos
Peptídeos/administração & dosagem , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Macrófagos/imunologia , Peptídeos/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Vacinação , Vacinas Virais/imunologia
19.
J Gen Virol ; 94(Pt 9): 1955-1960, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23740482

RESUMO

Porcine sialoadhesin (pSn; a sialic acid-binding lectin) and porcine CD163 (pCD163) are molecules that facilitate infectious entry of porcine reproductive and respiratory syndrome virus (PRRSV) into alveolar macrophages. In this study, it was shown that murine Sn (mSn) and human Sn (hSn), like pSn, can promote PRRSV infection of pCD163-expressing cells. Intact sialic acid-binding domains are crucial, since non-sialic acid-binding mutants of pSn, mSn and hSn did not promote infection. Endodomain-deletion mutants of pSn, mSn and hSn promoted PRRSV infection less efficiently, but also showed markedly reduced expression levels, making further research into the potential role of the Sn endodomain in PRRSV receptor activity necessary. These data further complement our knowledge on Sn as an important PRRSV receptor, and suggest - in combination with other published data - that species differences in the main PRRSV entry mediators Sn and CD163 do not account for the strict host species specificity displayed by the virus.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Receptores Virais/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Internalização do Vírus , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Análise Mutacional de DNA , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/genética , Análise de Sequência de DNA , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Suínos
20.
BMC Biotechnol ; 13: 33, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575465

RESUMO

BACKGROUND: Sialoadhesin (Sn)-expressing monocytes/macrophages have been associated with several diseases like inflammatory and autoimmune disorders as well as viral infections, and they also appear to play a role in the initiation of an adaptive immune response. This makes Sn-expressing cells not only attractive targets for cell-directed therapies, but also an appealing target for vaccination. Furthermore, since Sn was shown to be an endocytic receptor, the conjugation of effector molecules to an Sn-specific ligand should allow intracellular delivery of these conjugates. Previously, we developed functional Sn-specific immunoconjugates that were generated via chemical coupling. Although successful, the system requires significant optimization for each immunoconjugate to be made. To generate a more flexible and controlled system, we developed a recombinant antibody vector allowing the creation of genetic antibody fusion constructs. This paper reports on the characterization of the recombinant antibody and the evaluation of its use for Sn-directed targeting. RESULTS: The variable domains of the porcine Sn-specific monoclonal antibody 41D3 were sequenced and cloned in frame with a mouse IgG1 backbone. Transfection of HEK293T cells with the resulting plasmid led to the secretion of fully assembled IgG into the culture medium. This recombinant antibody rec41D3 was shown to specifically bind to porcine Sn with a comparable affinity as the native monoclonal antibody. In addition, rec41D3 also induced Sn endocytosis in primary macrophages and resided for prolonged times in early/late endosomes. To allow the generation of antibody fusion constructs, a multiple cloning site was introduced at the C-terminus of the heavy chain. Two fusion constructs were generated, one containing a V5 peptide tag and one containing an eGFP molecule. Both constructs were shown to be efficiently produced in HEK293T cells and easily purified using standard protein G chromatography. In addition, both V5 and eGFP were shown to be co-internalized together with rec41D3 into Sn-expressing primary macrophages. CONCLUSIONS: A recombinant antibody allowing targeted delivery of peptides and proteins to Sn-expressing macrophages was developed. Production and purification of antibody fusion constructs was possible without major optimization and with batch to batch consistency, confirming the development of a versatile antibody vector to evaluate Sn-directed targeting strategies in a porcine animal model.


Assuntos
Anticorpos Monoclonais/metabolismo , Macrófagos/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Endocitose , Endossomos/metabolismo , Proteínas de Fluorescência Verde/imunologia , Células HEK293 , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Lisossomos/metabolismo , Macrófagos/imunologia , Camundongos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Suínos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA